Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

\[ \newcommand{\IR}{\mathbb{R}} \newcommand{\IRnn}{\IR_{\geq 0}} \newcommand{\coloneqq}{:=} \newcommand{\sMid}{\,|\,} \newcommand{\SMid}{\middle|} \newcommand{\transp}{^\top} \]

Recap

strategic game $G=(N,S,u)$:
  • $N = \{1,\dots,n\}$ set of players
  • $S_i$ (pure) strategies of player $i \in N$
  • $u_i: S \to \IR$ utility fct. of player $i$

$s^* \in S$ (pure) Nash equilibrium (PNE) if
  $u_i(s^*) \geq u_i(s_i,s^*_{-i})$ f.a. $s_i \in S_i, i \in N$.
  $\iff s^* \in B(s^*) \coloneqq \prod_i B_i(s^*_{-i})$, where $B_i(s^*_{-i})$ is the set of best responses (for player $i$)

Rabin's Poison Puzzle:
(for the case: weak poison row < weak poison column < strong poison row < strong poison column)

$O$$A$$B$$C$
$O$$(-1,1)$$(-1,1)$$(-1,-1)$$(-1,-1)$
$A$$(1,-1)$$(-1,-1)$$(-1,1)$$(-1,-1)$
$B$$(-1,-1)$$(1,-1)$$(-1,-1)$$(-1,1)$
$C$$(-1,1)$$(-1,-1)$$(1,-1)$$(-1,-1)$

Strategies:

  • $O$: bring your strongest poison
  • $A$: drink weak poison before, bring water
  • $B$: bring water
  • $C$: drink weak poison before, bring your strongest poison
PNE via Best-Response-Correspondence
Input: Finite strategic game $G=(N,S,u)$
Output: Set of all PNE of $G$
  1. For each $i \in N, s_{-i} \in S_{-i}$ Do
  2. mmFor each $s_i \in B_i(s_{-i})$ Do
  3. mmmmmark $(s_i,s_{-i})$ with ${*_i}$
  4. Return all strategy profiles which have all marks ${*_{i}}$
$G=(N,S,u)$ zero sum game if $N = [2]$ and $u_1 = -u_2$.

Thm. 1.16: In zero-sum games the following are equivalent:
  1. $(k^*,\ell^*)$ PNE with value $v^* \coloneqq u_1(k^*,\ell^*)$
  2. $k^* \in \arg\max_{k \in S_1}(\min_{\ell \in S_2} u_1(k,\ell))$, $\ell^* \in \arg\min_{\ell \in S_2}(\max_{k \in S_1} u_1(k,\ell))$ and \[\max_{k \in S_1}(\min_{\ell \in S_2} u_1(k,\ell))=v^* =\min_{\ell \in S_2}(\max_{k \in S_1} u_1(k,\ell)).\]

Cor. 1.22: In finite zero-sum games the following are equivalent:
  1. $(x^*,y^*)$ MNE with value $v^* \coloneqq U_1(x^*,y^*)$
  2. $x^* \in \arg\max_{x \in \Delta(S_1)}(\min_{y \in \Delta(S_2)} U_1(x,y))$, $y^* \in \arg\min_{y \in \Delta(S_2)}(\max_{x \in \Delta(S_1)} U_1(x,y))$ and \[\max_{x \in \Delta(S_1)}(\min_{y \in \Delta(S_2)} U_1(x,y))=v^* =\min_{y \in \Delta(S_2)}(\max_{x \in \Delta(S_1)} U_1(x,y)).\]

mixed extension $(N,\Delta,U)$ of $G$:
  • $\Delta(S_i) \coloneqq \set{x_i \in [0,1]^{S_i} \sMid \sum_{s_i \in S_i}x_{is_i}=1}$ mixed strategies
    ⤳ $x = (x_1,\dots,x_n) \in \Delta \coloneqq \prod_i \Delta(S_i)$ mixed strategy profile
  • $U_i: \Delta \to \IR, x \mapsto \sum_{s \in S} x(s)\cdot u_i(s)$ expected utility
$x^* \in \Delta$ mixed Nash equilibrium (MNE) of $G$ if
  $x^*$ is PNE of mixed extension
  $\iff U_i(x^*) \geq U_i(x_i,x^*_{-i})$ f.a. $x_i \in \Delta(S_i), i \in N$.
Lem. 1:24: In zero-sum game we have for any $x^* \in \Delta(S_1)$, $y^* \in \Delta(S_2)$: \[\min_{y \in \Delta(S_2)}U_1(x^*,y) = \min_{j \in [n]}U_1(x^*,j) \quad\text{and}\quad \max_{x \in \Delta(S_1)}U_1(x,y^*) = \max_{i \in [m]}U_1(i,y^*).\]
Thm. 1.25 (Minimax-Thm of Neumann): Every finite zero sum game has a MNE.

Thm. A.3: Given any $(x^*, z^*)$ and $(y^*,w^*)$ for
\begin{align}\label{eq:LP}\tag{LP} \begin{array}{rrcrcl} \max_{x,z} & c^Tx &+& d^Tz && \\ \text{s.t. } & Ax &+& Bz &\leq & a \\ & Cx &+& Dz &= & b \\ & x & & &\geq &0 \end{array} \end{align}
\begin{align}\label{eq:DP}\tag{DP} \begin{array}{rrcrcl} \min_{y,w} & a^Ty &+& b^Tw && \\ \text{s.t. } & A^Ty &+& C^Tw &\geq & c \\ & B^Ty &+& D^Tw &= & d \\ & y & & &\geq &0 \end{array} \end{align}
  1. If both are feasible solutions, then $c\transp x^* + d\transp z^* \leq a\transp y^* + b\transp w^*$
  2. If both are optimal solutions, then $c\transp x^* + d\transp z^* = a\transp y^* + b\transp w^*$
x_1 x_2 12 12 x_1 x_2 12 12
Obs. 1.8: $x^* \in \Delta$ is MNE $\iff x^* \in B(x^*) \coloneqq \prod_i B_i(x^*_{-i})$

Thm. 1.27 (Brouwer's Fixed Point Thm): Given $f: K \to K$ with
  • $K \subseteq \IR^k$ non-empty, compact, convex
  • $f$ continuous
Then, $f$ has a fixed point, i.e., $\exists x^* \in K: f(x^*) = x^*$.

Thm. 1.28: Every finite game has a MNE.



Matching Pennies:

$H$$T$
$H$$(1,-1)$$(-1,1)$
$T$$(-1,1)$$(1,-1)$
x_{1T} x_{1H} 1 1 \Delta(S_1) x_{2T} x_{2H} 1 1 \Delta(S_2) H \Delta(S_1) T H \Delta(S_2) T
Computational Game Theory (WiSe25/26), §1. Strategic Games
Lukas Graf (lukas.graf@uni-passau.de)
↑ All Slides